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Abstract-Analytical solutions are presented for heat losses from a buried pipe. Two cases are considered. The 
first one involves a mixed (convective) boundary condition with a uniform heat transfer coefficient at the pipe 
surface which would be the case for turbulent flow. A simple approximate expression, accurate within 2’;,,, is 
derived for the shape factor in this case. In the second case, a laminar flow with linear temperature variation 
atong the pipe axis is considered. The coupling of the heat transfer process inside and outside the pipe requires 
simultaneous solution of the energy equations for these two regions. The complicated geometry 1s handled in 
an elegant manner with the use of the bicylindrical coordinate system. The results include the temperature 

distributions and the shape factor in each case. 
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I N RK-I:NT years the problem of heat loss from a buried 
pipeline has received considerable attention. This 
problem arises, for example, in connection with oil 
lines, powerplant steam and water distribution lines, 
underground electrical powerline transmission, and in 
certain types of heat exchangers. 

Approximate and exact steady state heat loss calcu- 
lations are available in the fiterature for pipes with 
idealized boundary conditions such as isothermal 
surfaces [I-41 or uniform heat ftux surfaces [5]. The 
approximate solutions are based on the superposition 
of infinite line heat source and sink solutions [l-3]. 
The exact solutians are obtained by the use of the 
bicylindrical coordinates [4, 51. Some approximate 
time-de~ndent solutions are given by Ioffe [6] and by 
Martin and SadhaI [7]. 

All the above analyses refer to idealized scenarios 
(pipes with isothermal surfaces or uniform heat flux 
surfaces), which do not occur often in practice. The 
purpose of this paper is to consider a somewhat more 
realistic situation in which the thermal interaction 
between the fluid flowing in the pipe and the soiid 
medium in which the pipe is buried is taken into 
consideration. Two cases are treated. First (section 3). 
we assume a mixed (convecti~~e) boundary condition 
with a uniform heat transfer coefficient at the pipe 
surface. Such a model is quite realistic when the fluid in 
the pipe is wefl mixed, as occurs in turbulent flow. In 
the second case (section 4), we assume fully developed 
laminar flow in the pipe. The temperature distri- 



the z direction, %I is the thermal diffusivity of the fluid, 
and ~iis the average velocity. We now have to satisfy at 
the pipe surface the conditions 
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butions inside and outside the pipe are calculated 

simultaneously. For the sake of brevity, we shall refer 
to these two cases as turbulent and laminar, re- 
spectively. Finally, in section 5 we compare the laminar 
and turbulent cases. The results include the tempera- 
ture distribution inside (for the laminar case only) and 
outside the pipe and the thermal resistance between 
the fluid and the medium surfaces as a function of the 
burial depth and the properties of the fluid and the 
solid medium. 

and 

We introduce nondimensional variables by scaling the 

length with R and the temperature with (7, - T,). 
That is, we nondimensionai~ze the temperature as 

follows : 

2. ~OR~l~L.~TlON 

Consider a pipe of radius R buried at depth D below 
an isothermal (T,) surface of a semi-infinite solid (Fig. 
1). Fluid with bulk temperature T, is flowing in the 
pipe. 

In the first case, that of a turbulent flow in the pipe, 
we have to solve the heat equation for the solid medium 

v27‘; = 0 (1) 

with boundary conditions 

TT = T, at the medium surface 

and 

where Ti is the temperature distribution. k is the 
thermal conductivity, 11 is the heat transfer coefficient, 
and r* is the radial coordinate (Fig. 1). Indexes 1 and 2 
refer to conditions inside and outside the pipe, re- 
spectively. Asterisks denote dimensional variables 
which will later be made nondimensional. 

For the case of laminar flow, we solve, in addition to 
equation (1 ), the energy equation for fully developed 
forced convection in the pipe 

u.VT* = V’T’ I I 

where 

7-T = T; (5) 

Ti = (Tf - 7-,)/p, - T,). 

It is convenient to carry out the analyses by using the 
bicylindrical coordinate system (a, b, Z) [3, 41. This 
coordinate system is sketched in Fig. 1 and has the 
advantage that the boundary conditions are located 
along the coordinates. The coordinates t( = 0 and tl = 
!Q represent the medium and the pipe surfaces, 
respectively. 

The transformation into bicylindrical coordinates is 
achieved by using the formula 

‘E + i@ 
.s+ir=utanh ~-- , 

i 1 2 / (6) 

O<!x< 1, -n<fl<n. 

The Laplace operator takes the form 

v2 = zal,, (;$ + (G2, (7) 

where 

g(r, fi) = rr2(cosh CL + cos ,6,-“. (8) 

The pipe surface (3”) is described by the circle 

(.x - acoth zO)’ i !.’ = si;;f;- (9) 
0 

where 

u = 21$1 - (r*/R)2]eZ (4) 

is the axial velocity in direction I, e, is the unit vector in 

u = sinh E,, and ucoth a0 = D/R. 

3. TURBLLENT FLOW 

a=0 
In this section we assume that the heat transfer 

coefficient at the pipe surface is uniform. Such a 
situation may arise when the fluid in the pipe is we11 

mixed as in turbulent flow. The equations (1) and (2). 
when rewritten in bicylindrical coordinates, have the 

form 

i2T i2T 
-- 2 + -1 = 0. 
(‘a2 ;p 

(cosha,+cosp)$? = Bi~(l - T,) at a = 

T,(O. IO = 0 

IrR FIG 1. The geometry of the problem and the bicylindrical 
coordinate system. 

where Bi = Y 1s the Biot number. 

(IO) 
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The solution to equation (lOa) with boundary 
condition (10~) is readily obtained in the form 

T, = A, x + 1 A, sinh /tcl cos n/L (11) 
n-1 

The coefficients A, are to be established with the aid of 
boundary condition (lob). The resulting relationship 
is 

(cash a, + cos @) 
i 

A, + i tz ‘4, cash not,, cos nfl 
I, .- I i i 

= aBi 
( 

1 - &a, - 2: A,I sinh ~1~~~0~~7~ . (12) 
n-l 1 

The factor (cash u0 + cos B) above causes some 
trouble since we cannot equate the infinite series in 
equation (12) on a term-by-term basis. However, we 
can overcome this difficulty by using the trigonometric 
identity 

cos ficos I$ = ;[cos(n c 1)/I + COS(f2 - 1)/I] 

to obtain a set of linear algebraic equations 

A, + A,(cosh’ a0 + u Bi sinh c(~) + A, cash 2a, = 0 

A, _ 1 cosh(rr - 1) a0 + A,(ncosh f7 a0 cash a,, 

+ a Bi sinh na,) 

A “+, cosh(n + l)a, = 0 for II 2 2. (13) 

This set of equations cannot be soived since any IV 
equations involve N i- 1 unknowns. However, A, is a 
decreasing sequence and can be truncated at some rz = 
N. Should we set A,, , = 0, the above equations (13) 
can be solved in a closed Form for any N. 

An alternative method of solution is to supplement 
the set of equations (13) with an additional equation. 
This equation states that the amount of heat con- 
ducted from a unit length of pipe surface 

= A, 2xk2(T, - T,), 

(141 

is equal to the amount of heat lost by the fluid, 

Q* = ha (T, - 7-J 

X s n 
pli 

Cl - 7.,(n,.P)1coshad~ cosg. (15) 
0 

By equating equations (14) and (15) we obtain the 
supplementary equation 

+ i A,sinh nor,(- l)ne-nZn= 1. 
??=I 

(16) 

We can now truncate equations (13) for some n = N 
and solve them simultaneously with equation (16). 

Both procedures described above are easy to apply. 
The equations are essentially tridiagonal, therefore no 
matrix inversion is necessary. We apply a modified 
version of the Gauss-Jordan elimination technique. in 
which a special provision is added to diagonahze 
equation (16). The second procedure described above 
usually leads to a quicker convergence ; however, it is 
more susceptible to round-off errors. 

The number of terms needed to achieve a desired 
accuracy is inversely proportional to ao. For example, 
to achieve precision up to 3 significant digits, about 30 
terms are needed for a, = 0.1 while 2 are sufficient for 
!I0 2 2. 

Next, we investigate the behavior of the solution for 
large and small values of a0 

For large values of ao, (a pipe buried deep below the 
surface), we maintain only the ftrst term in equation 
(11). Consequently we obtain 

Bia 
T,--. 

1 + Bi a0 
(17) 

For even larger values of a0 and moderate values of Bi, 

equation (17) is identical to the case of an isothermal 
pipe. 

For small values of x0, an asymptotic solution for T 
can be obtained in the form of a power series in cxO. The 
two leading terms in such a series are 

T- 
a Bi a 

cash a0 + cos p i 
l- 

These asymptotic expressions may be used to calculate 
the temperature field for small and large c(* without 
evaluating the coefficients A,, from equation (13). They 
may be also used for yet another purpose. 

Although the method of solution described above 
leads to exact results it is not convenient for engineer- 
ing purposes. One would rather have a closed form 
approximate expression. By solving ?2T/hx2 = 0 with 
the appropriate boundary conditions, we obtain the 
following expression for the temperature field : 

n Bi a 
TZ 

cash IY~ + cos fi + uBia, ’ 
(19) 

It is easy to see that at the limits of large and small ao, 

expression (19) behaves like the asymptotic solutions 
(17) and (18), respectively. Consequently, we may 
expect equation (19) to be a reasonable approximation 
of the temperature field for all values of ao. To illustrate 
that this is indeed the case, we show in Fig. 2 exact 
(solid lines) and approximate (dashed lines) tempera- 
ture profiles on the pipe surface for various burial 
depths (ao) and for Bi = 1. The ordinate is the 
temperature T,(a,, &, and the abscissa is the coor- 



dinate fi. Clearly, the approximation (19) resembles 
quite well the exact solution. The discrepancy between 
the approximate and exact results is always smaller 
than 159& 

Another matter of interest for engineering purposes 
is the shape factor (S) which is defined by the ratio 

S = _ ._.!?* ._~ 
27&,(7‘, - 7’0) 

where Q* is the heat transfer per unit length of the pipe. 
In accordance with equation (14). the exact value for S 
iS 

s = n,,. (21) 

The corresponding value for large r0 is found from 

equation (17) to be 

Ri 
s _ --_ -. 

(CY, Hi + I) 
(21a) 

For small values of x0, S is obtained from equation (I 8) 
as 

s - Bi( 1 - Bi cxo coth ct,), 

and the approximation based on equation (19) is 

s 1 -__..2__. 
2 (1 + Bi’ CQ + 281 slo coth Q) 12’ (‘w 

As may have been expected, for large and small values 

of Q, equation (22), approaches the corresponding 
asymptotic results. We also compare the exact equa- 
tion (21), and approximate equation (22), values of S. 
The agreement is excellent. The deviation between the 

two results is always smaller than 2”<;, with the 
approximate result (22) being always slightly below 
the exact one. equation (21). This means that for any 

practical purpose expression (22) can be used to 
calculate the shape factor. This is a rather exciting 
result since expression (22) is relatively simple and easy 
to apply compared to the exact expression. Yova- 
novich [S] has pointed out to us that expression (22) is 

0 
P 

tr 

FIG. 2. Temperature distribution on the pipe surface for 
various burial depths and for Bi = I. CQ, = 0.25.0.5, 1 and 2. 
correspond to DiR = 1.031, 1.12X, 1.543, and 3.762, 

respectively. 

01 10 100 100.0 
81 

FIG,. 3. The shape factor(S) is shown as a function of the Riot 
number (Bi) for various burlal depths rl, = 0.25. 0.5. and 1. 
(XR = 1.031, 1.128 and 3.762). The solid lines and the circles 
represent the exact and approximate solutions respectively. 
The dashed curve, the x and the + designate the ap- 
proximate behavior for large a, small Bi and large Bi 

respectively. 

actually a lower bound of (21). This matter is discussed 
in the Appendix. Figure 3 shows the shape factor as 
a function of the Biot number (Bi) for various burial 
depths (Q,). The abscissa is the Biot number. and the 
ordinate is the actual shape factor divided by the shape 
factor of an isothermal pipe (i;r,). The solid lines 
represent the exact results from (21). The approximate 
calculation (22) is presented by circles in Fig. 3. Since 

the approximation (22) is so close to the exact solution, 
the circles and the solid lines actually coincide. The 
dashed line shows the approximation for large a,, 
equation (2la), evaluated for c(~ = 1. As r0 increases, 
the difference between equation (21a) and (22) de- 
creases. For a, >, 2, expression (21a) can be used with 
an error smaller than l?,. For small values of Bi, S 
behaves like Bi. This is shown in Fig. 3. using the 
notation x . For large values of Bi, S behaves like 

and as Bi -+ w. S --t (l/r,,). which is the shape factor 
for an isothermal pipe. The behavior at large Bi values 
is denoted by the symbol + in Fig. 3. 

In the previous section. we solved the heat transfer 
problem for the case of a uniform heat transfer 
coefficient on the pipe surface. One cannot assume. 
however, such uniformity in the case of laminar flow. 
In this case, the temperature profile is asymmetric with 
respect to the pipe axis. Consequently, the heat transfer 
coefficient isexpected to have angular dependence. It is 
thus necessary to solve simultaneously for the tem- 
perature distribution inside and outside the pipe. 

The equations which must be solved are (I ). (3) and 
(5). In order to separate the variables in equation (3). 
we assume that the temperatures, TT and TT, vary 
linearly along the pipe axis. As a result we have 
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Ti* = - ,2 2 + o&Y, p) 
i 1 (23) 

where KK,;~@ = constant, and indexes 1 and 2 refer to 
conditions inside and outside the pipe, respectively. 
The equations (l), (3) and (5) have the form 

v%, = - K[l - (riR)2), (24) 

VI@, = 0 (25) 

with the boundary conditions 

@,(O” 8) = 0 (26) 

at the medium surface, 

Q,(%, 8) = M% P), (27) 

at the pipe surface (Q,), and 

O,(a, 8) < % as CL--, X. (29) 

To obtain a solution for equation (24). we first 
obtain an axially symmetrical particular sohttion and 
add to it a solution of the homogeneous equation V%, 
= 0. We therefore have 

01 = - I< 
L 

1 I 
-(r/S)2 - - (r/R)4 
4 16 

‘/’ 
+ A0 + c A,, e-“‘cosnp 

n “T I I 

and 

(30) 

(31) 

The boundary conditions (26) and (29f, are already 
satisfied. Upon satisfying (27) and (28) we obtain 

A,=- !$ao+2 
i 2 16 ! 

,4,= - 
(- 1)” sinh ?I&() 

2n[sinh IQ + (k ,lk,) cash ncr,] ’ 

(32) 

!1 = 1. 2, . (33) 

B, = - $ik2) (34) 

and 

I? = 1, 2, . . . . (35) 

In order to obtain an expression for the shape factor, 
we must calculate the fluid bulk temperature, 0,. 
This is given by 

, . 

il 
0, (a, /J) [l - (r/R)‘] dA (36) 

Y . 
where the double integration is carried out over the 

cross-sectional area of the pipe. By the representation 
of (r/R) in the (ct, 8) coordinates we find that 

11 1 
0, = K ;- + ;?(k,/kl)a, - 

a,, sinh (a - a,,) cos vJ3 

(cash a + cos p)3 
dud/?. 

(37) 

After tedious evaluation of the above double integral, 
we obtain 

The heat flow per unit length of the pipe is given by an 
expression comparable to equation (14). The shape 
factor [defined in equation (19)] is 

(391 

The first term in equation (39) is identical to the 
classicaf result for a pipe with uniform heat Aux at its 
surface [2]. The second term is identical to the thermal 
resistance for an isothermal buried pipe, and the third 
one can be viewed as a correction term whase magni- 
tude decreases with increasing zO. 

5. DISCUSSION 

In this section we compare calculations obtained by 
using the two models presented in the previous 
sections. Since the description of the iaminar tempera- 
ture fiefd inside the pipe will assist us in better 
understanding the similarities and the differences 
between the two models, we start by introducing the 
vertical temperature profile inside the pipe for various 
burial depths (D/R) and various thermal conductivity 
ratios (k,/k,). These temperature distributions are 
shown in Figs. 4 and 5 respectively. The abscissa is the 
normalized temperature (I,,/&,, and the ordinate is the 
radial location with respect to the pipe center. These 
temperature profiles correspond to the laminar case, 
and their asymmetric structure is apparent. The maxi- 
mum temperature aIways occurs below the center- 
tine of the pipe; but as the burial depth increases. the 
location of the maximum temperature migrates to- 
wards the pipe center (Fig. 4). Consequentfy, the 
temperature at the bottom of the pipe decreases with 
increasing burial depth. The dependence of the tem- 
perature protiie on the thermal conductivity ratio 
k,/k, is shown in Fig. 5. We note that for high k,/k, 
ratios, the relatively high thermal conductivity of the 
medium tends toequalize the temperature distribution 
on the pipe surface and forces the temperature profile 
inside the pipe to be almost symmetric. Hence, the 
location of the temperature apex migrates towards the 
pipe center with increasing k,/k,. For low k,/k, ratios, 

the relatively high conductivity of the fluid tends to 
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Frc; 4. The normalized temperature profile (&‘A,) in the pipe 
is shown for various burial depths z. = 0.25.0.5. and 1. (D/R 
= 1.031, l.fX and 1.543). The medium-fluid thermal 

conductivity ratio is kJk, = I. 
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7 
a relationship between the two parameters, (Bi) and 
(li,/k,), in the form 

flatten the temperature profile and to decrease the 
asymmetry. 

Note that the physical properties in the Iaminar and 
turbulent models are described by the fluid thermal 
conductivity ratio (k,!k ,) and by the Biot (Bi) number, 
respectively. To facilitate comparison WC assign for h in 
the latter case the classical value 

which is the Nusselt number for pipe flaw with uniform 

heat flux at the surface [Z]. Using this value, we obtain 

-1.0 
0 0.2 04 0.8 0.8 1.0 1.2 1.1 1.6 

Frri. 5. The normalized temperature profiie (0,/&J in a pipe 
buried ar depth zn = 0.5 fD;R = 1.128) is shown for various 
medium-fluid thermal conductivity ratios k,ik, = O.L, 1, LO. 

Hence, when comparing the two cases we shall use the 
correspondingvalues satisfying the above relationship. 

The temperature distribution around the pipe sur- 
face is shown in Figs. 6 and 7 respectively as a function 
of the burial depth and the thermal conductivity ratio 

(k,jli,). The ordinate is the normalized temperature 
O/O,, and the abscissa is 8. The dashed and solid lines 
represent the turbulent and the laminar models re- 
spectively. The qualitative behavior in both cases is 

similar. Since in the turbulent model there are tem- 
perature extrema in the pipe. the peak temperature at 
the pipe bottom tends to be lower than in the case of 
the laminar model. A marked difference hetween these 
two models is that the ratio U/O, at the pipe bottom 
rises with increasing burial depth for the turbulent 
model while it declines for the iaminar ot~e (Fig. 6). The 

dependence of the temperature profile on the thermal 
conductivity ratio (k&, ) is shown in Fig. 7. The results 
for the laminar and turbulent cases almost coincide for 
high li,k, ratios. This may have been expected since 
the relatively high thermal conductivity of the fluid 

tends to equalize the temperature inside the pipe 

(Fig. 5). 
Finally, in Fig. 8 we present the shape factor (S) as a 

function of the burial depth ((,,) for various values of 
Ic~/Jc~ (or Bi). The dashed and solid lines represent the 
turbulent and laminar cases respectively. The ordinate 
is the ratio of the actuaI shape factor S normafized by 
the shape factor of an isothermal pipe f l jr,). The 

abscissa is the burial depth. shown in terms of zO and 
D/R at the bottom and top respectively. The general 
characteristics of Fig, 8 are in agreement with the 
previous figures. For high values of k,ili ,, the laminar 
model approaches symmetry and the heat transfer 
coefficient on the pipe surface is almost uniform ; Titus 
the results of both models coincide. For low values of 
i;,jli, and for large values of (x0, we expect to approach 
a situation of an isothermal pipe and again both 

0 P ll 

Ftic;. 6. The temperature distribution around the pipe surface 
is shown for pipes buried at various depths x0 = 0.25,0.5 and 
l.(D/R = 1.031,1,12X and 1.543). The medium-flutd thermal 
conductivity ratio is k,!k, = 1, and the corresponding Eiot 
number is Bi = Z.18. The dashed and sofid lines correspond 

to the turbulent and lam&r cases, respectively. 
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FK;. 7. The temperature distribution around the pipe surface 
for a pipe burial at depth 5~” = OS (D/R = I.ltO)is shown for 
various medium-fluid thermal conductivity ratios. The 
dashed and solid lines correspond to the turbulent and 

laminar cases respectively. 

I 

1 
2.0 

FK;. 8. The shape factor is shown as a function of the burial 
depth (ao) for various fluid~medium thermal conductivity 
ratios. The dashed and solid lines correspond to the turbulent 

and laminar cases respec6vely. 

models give similar resuk It is interesting to note that 
the deviation between the two models is always smaller 
than LOO/,. consequently, the simple expression (22) 
can be used even for the laminar-asymmetriccase with 
relatively small error. 

6. CONcLC’S1ON 

We have derived expressions for the temperature 
distribution and the shape factor for turbulent and 
laminar flow in a buried pipe. In the former case, we 
assume a uniform heat transfer coefficient at the pipe 

surface, and we find that the expression for the shape 

factor 

Bi 
s= 

(1 -t Bi’ a$ + 2 Bi a0 coth ao)’ ‘2 

is accurate within 2”/,. In the laminar case, although the 
temperature profile in the pipe is asymmetric, the 
above expression provides results which are accurate 
within loo/,. 
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APPENDIX 

The purpose of this Appendix is to show that the approxi- 
mate shape factor, equation (22), is a lower bound of the 
exact shape factor, equation (21). 

Yovanovich [8] suggests a method of obtaining a lower and 
upper bound for the shape factor (S). The lower bound is 
obtained by considering a flux tube bounded by two constant 
/j surfaces (Fig. I), say, @ and @ + d/j. In effect, the surfaces 1’ 
and p + dB can be viewed as insulated partitions. Con- 
sequently, no heat flow is allowed along constant r lines. The 
thermal resistance of such a section will be the sum of the film 
resistance inside the pipe and the conductive resistance inside 
the flux tube. The shape factor can be written as the inverse of 
the resistance 

Integration over B yields the lower bound for the shape factor 

f‘,i : 2f 
s, = 2 

I 
dS. (A21 

~ ,; 0 

The expression we obtain here is identical to our approxi- 
mate shape factor, equation (22). This however, should not 
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Table Al. Comparison between the exact shape Factor (S), the approximate shape factor (f,) and the upper bound (S,) 

Bi = 0.1 Bi = 1 Bi = 10 l3i = 100.0 

x0 D,‘R S, S S, S, S S” S, S S” S, S Sll 

0.1 1.005 0.0913 0.0919 0.0990 0.S76 0.585 0.909 2.129 2.137 5.0 5.757 5.760 9.091 
0.2 1.020 0.0912 0.0918 0.0980 0.571 0.580 0.833 1.989 1.997 3.333 4.070 4.07 1 4.762 
a3 1.045 0.0910 0.0917 0.0971 0.563 0.572 0.769 1.808 1.814 2.5 3.006 3.006 3.226 
0.5 1.128 0.0906 0.0912 0.0952 0.541 0.549 0.667 1.449 1.452 1.667 1.918 1.918 1.961 
1.0 1.543 0.0886 0.0892 0.0909 0.465 0.470 0.5 0.886 0.887 0.909 0.987 0.987 0.9YO 
2.0 3.762 0.0826 0.0831 0.0833 0.33t 0.331 0.333 0.475 0.475 0.476 0.497 0.497 0.498 

be su~rising since the. expression (22) has been calculated by 
‘?T 

using the t-dim. equation, -y--T = 0. In this equation we 
i-!X- 

implicitly do not allow heat Row along constant x lines. 
Hence, our l-dim. approximation is comparable to the flux 
tube model, and our approximate shape factor, equation (22), 
is a lower bound. 

Yovanovich [8] also suggests a method of constructing an 
upper bound to the shape factor. On the assumption that the 
pipe is isothermal, we obtain the upper bound for the shape 
factor (S” ) 

This is identical to our approximate shape factor for large x0 
[equation @la)]. 

It is interesting to check how close these upper and lower 
bounds are to the exact solution. We exhibit this information 
in Table Al where we present the exact shape factor and the 
upper and lower bounds for various values of x0 and the Biot 
number. 

As is evident from the table, the difference between the 
upper and lower bounds decreases for large values of x0, small 
values of Bi and large values of Bi. However, in the range of 

moderate Biot numbers and small n,, there is a fairly large 
gap between the lower and upper bounds. We note also that 
the exact value is remarkably close to the lower bound. The 
maximum deviation is well below 2”;,. 

It is difficult ta provide a rigorousexplanation as to why the 
lower bound is so close to the exact solution. We note, 
however, that the temperature distribution associated with 
the lower bound (19) satisfies the differential equation (1) in 
an average sense and it also satisfies the boundary condition 
at the pipe wall, while the temperature distribution associated 
with the upper bound does not satisfy the same boundary 
condition. Consequently, the surface temperature associated 
with the lower bound resemblesvery closely the exact one as is 
evident from Fig. 2. On the other hand, the surface tempera- 
ture associated with the upper bound differs significantly 
from the exact one. For example. the isothermal surface 
temperature for z,, = 0.25 and Bi = 1 is 0.20. We see that this 
isotherm (Fig. 2) is much above the exact temperature in the 
upper section of the pipe. For this reason, the shape factor 
associated with this isothermal temperature is well above the 
exact value. On the other hand, the temperature distribution 
associated with the lower bound is only slightly below the 
exact temperature distribution in the same region. Con- 
sequently. the lower bound is very close to the exact shape 
factor. 

PERTES DE CHALE.UR A PARTIR D’UN FLUTDE EN ECOIJLEMENT DANS UN TUI’AU 
ENTERRE 

R&mm&On pr&ente des solutions analytiques pour tes per&s de chaleur i partir d’un tuyau enterrk. On 
considire deux cas. Le premier suppose une condition aux limites mixte (convective) avec un coefficient de 
transfer1 thermique uniforme i la surface du tube, ce qui est le cas de l%coulement turbulent. Une expression 
simple approch&, prdcise ri 2% p&s est obtenue pour le facteur de forme dans ce cas. Dans le second cas, on 
considdre un Ccoulement laminaire avec une variation laminaire le long de I”axe du tube. Le couplage du 
transfer1 thermique d l’intirieur et i I’exterieur du tube demande la rdsolution simultanie des equations de 
l’gnergie pour ces deux r&ions. La giometrie compliqute est prise en compte d’une fapn Clkgante par 
l’utilisation du systeme bicylindrique de coordonn6es. Les r&hats concerncnt les distributions de 

tempfrature et te facteur de forme dans chaque cas. 

W~RMEVERLUST~ EINES DURCH EIN EIN~EGRAB~NES RUHR STR~M~ND~N FL.UIDS 

Zu~mrn~~fassung -Es werden anatytische Liisungen fiir die W~rmever~uste eines e~ngegra~n~ Rohres 
angegeben. Zwei FBlle werden betrachtet : Der erste Fall enthClt eine gemischte (konvektive) Rand~din~u~~~ 
mit einem gleichfiirmigen W~rme~bergangskoeffizienten an der RohroberflLhe, was fiir turbulente 
StrGmung zutrifft. Ein einfacher NXherungsausdruck fiir den Formfaktor dieses Falles wird mit einem 
g&&en Fehier von kleiner 20,b hergeleitet. fm zweiten Fall wird eine laminare Striimung mit linearer 
Temperaturinderung entlag der Rahrachse betrachtet. Der gekoppelte WCrmeiibertragungsprozeB 
innerhalb und auRerhalb des Rohres efordert die simultane Liisung der Energiegleichungen fiir diese beiden 
Gebiete. Die komplizierte Geometrie wird in eleganter Weise mit einem bizylindrischen Koordinatensystem 

behandelt. Die Ergebnisse enthalten die Temperaturverteilung und den Formfaktor fiir jeden Fall. 
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nOTEPM TEIX-IA )fCM~KOCTbIO FIPM TEqEHHM B 3AI-JIYGJlEHHO@ TPYEE 

.hlOTaUW-npenCTaBneHb1 ariamiTtiqecme pewewix anx onpenenemin noTepb Tenna 3arJIy6neHHOti 

rpy608. PaCCMOT~HbI nBa CJIyWfl. B IIepBOM HCIIOflb3yeTCn CMeIUaHHOe (KOHBCKTHBHOC) rpaHH9HOe 

yCnOlWie C OLlHOpOnHbIM IC03@$MUWCHTOM I'ICpCHOCa TeUJIa Ha rIOBepXHOCTM Tpy6bI, KOTOpbIfi HMCCT 

MCCTO npll Typ6yneHTHOM TeYeHHH. &In @OpM-+aKTOpa BbIBeLleHO UpOCTOC npki6JWKeHHOe 

ebIpamesse,namulee norpemsocTb B npenenax 29/,. Bo BTOPOM cnyrae pacck4aTpmaeTcr namiHapHoe 

TCYCHHC C nHH&HbIM II3MCHeHMeM TeMUepaTypbI II0 OCU Tpy6bI. B3aHMOnekTBHe npoueccos 

TCilJlOnepeHOCa BHyTpH H CHapyxH Tpy6bI TpC6yeT OnHOBpCMCHHOrO peLI.IeHHR ypaBHCHL,ti 3HeprHH 

IlnS 3TMX nByX OhiCTCii. ,&I!4 PaCCMOTptHNR CJYOZKHO8 PZOMCTpkiki FIPHMCHKCTCR A3RIUHbIii MeTOn C 

ifCnOnb30BaHHeM 6mwnfHnpsvecxoiiCltCTeMbiKoopnrrHaT. nonygeHb1 pe3yAbTaTblno pacnpenenessro 

TemepaTyp ~~opw~$axTopa~ am~axnoro cnyqax. 


